| NAME | Key | DATE | _ | |------|-----|------|---| | | A | | | ## Math Fluency Summative 3rd Grade Trimester 1 (Part 1) **3.NBT.A.2** I can fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. Add or Subtract as needed. 4.NBT.B.4 I can fluently add and subtract multi-digit whole numbers using the standard algorithm. (Grade 4 expectations in this domain are limited to whole numbers less than or equal to 1,000,000.) | NAME | Key | a a | DATE | | | |------|--------------|-----------|-----------------------|-------------|----------| | _ | Math Fluency | Summative | 3 rd Grade | Trimester 1 | (Part 2) | **3.OA.C.7** I can fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers. Multiply. | wuitipiy. | | | | | | | | |-----------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------| | 1
<u>X 4</u> | 2
X 8 | 3
<u>X 1</u> | 4
<u>X 8</u> | 5
<u>X 3</u> | 6
<u>X 9</u> | 7
<u>X 3</u> | 8
<u>X 9</u> | | 4 | 16 | and a second | 32 | 15 | 54 | 21 | 72 | | 9
<u>X 3</u> | 1
<u>X 5</u> | 2
<u>X 2</u> | 3
<u>X 9</u> | 4
<u>X 3</u> | 5
<u>X7</u>
35 | 6
<u>X 4</u> | 7
<u>X 8</u> | | 2.7 | 5 | 4 | 27 | 12. | | 24 | 56 | | 8
<u>X 3</u> | 9
<u>X 9</u> | 2
<u>X 4</u> | 3
<u>X 7</u> | 4
<u>X 5</u> | 5
<u>X 5</u> | 6
<u>X 8</u> | 7
<u>X 4</u> | | 24 | 81 | | 3./ | 20 | 25 | 48 | 28 | | 8
<u>X 7</u> | 2
<u>X 6</u> | 3
<u>X 4</u> | 2
<u>X 7</u> | 8
<u>X 6</u> | X 7 | 9
<u>X 8</u> | 5
<u>X 4</u> | | 56 | 12 | 12 | 14 | 48 | | 72 | 20 | | 4
<u>X 1</u> | 3
<u>X 3</u> | 6
<u>X 5</u> | 7
<u>X 2</u> | 8
<u>X 2</u> | 9
<u>X 4</u> | 6
<u>X 8</u> | 7
<u>X 7</u> | | | | 30 | 14 | 16 | 36 | 48 | 49 | | 4
<u>X 6</u> | 7
<u>X 9</u> | 6
<u>X 7</u> | 8
<u>X 5</u> | 9
<u>X 2</u> | 8
<u>X 4</u> | 3
<u>X 6</u> | 9
<u>X 6</u> | | 34 | 63 | 12 | 40 | 18 | 32 | 18 | 54 | **4.NBT.B.5&6** I can multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers. I can find whole-number quotients and remainders with up to four-digit dividends. | | annoon on a carring | | | | | |-------------|---------------------|-------------|--|------------|------------| | 25 | | | 4 (1841) 477 (1841) 47 | 100 | | | <u>x 12</u> | 64 ÷ 2 = | 150 ÷ 5 = | 248 ÷ 4 = | <u>x 2</u> | 900 ÷ 10 = | | 300 | 32 | 30 | 62 | 200 | 90 | | 10 | | 30 | 25 | 30 | | | <u>x 6</u> | 100 ÷ 10 = | <u>x 24</u> | <u>x 9</u> | <u>x 4</u> | 500 ÷ 5 = | | 60 | 10 | 720 | 225 | 120 | 100 | | NAME | Key | DATE | | | |------|------------------------|-----------------------|-------------|----------| | | Math Fluency Summative | 3 rd Grade | Trimester 1 | (Part 3) | **3.OA.C.7** I can fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers. Divide. | Divide. | | , | | | |-------------|------------|------------|------------|-------------| | 48 ÷ 8 = 6 | 60 ÷ 10 = | 20 ÷ 4 = 5 | 24 ÷ 3 = 8 | 32 ÷ 8 = 4 | | 54 ÷ 6 = 9 | 28 ÷ 4 = 7 | 63 ÷ 9 = | 9 ÷ 1 = 9 | 42 ÷ 7 = 6 | | 70 ÷ 7 = /D | 80 ÷ 10 = | 24 ÷ 8 = 3 | 24 ÷ 6 = 4 | 18 ÷ 6 = 3 | | 36 ÷ 9 = 4 | 7 ÷ 1 = | 3 ÷ 3 = | 18 ÷ 3 = | 36 ÷ 6 = | | 50 ÷ 5 = /0 | 70 ÷ 10 = | 16 ÷ 4 = 4 | 56 ÷ 7 = | 30 ÷ 10 = 3 | | 35 ÷ 5 = 7 | 56 ÷ 7 = | 36 ÷ 9 = | 10 ÷ 2 = 5 | 63 ÷ 7 = 9 | | 9 ÷ 3 = | 25 ÷ 5 = | 40 ÷ 4 = | 25 ÷ 5 = 5 | 64 ÷ 8 = | | 14 ÷ 2 = 7 | 24 ÷ 4 = 6 | 15 ÷ 3 = | 6 ÷ 2 = 3 | 42 ÷ 6 = | | 18 ÷ 9 = 2 | 16 ÷ 8 = 2 | 18 ÷ 2 = 9 | 12 ÷ 2 = 6 | 6 ÷ 1 = 6 | **4.NBT.B.5&6** I can multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers. I can find whole-number quotients and remainders with up to four-digit dividends. | 30
<u>X 2</u> | 104 ÷ 8 = | 300 ÷ 5 = | 180 ÷ 3 = | 100
<u>X 3</u> | 108 ÷ 9 = | |------------------|-----------|------------|------------|-------------------|------------| | 60 | 13 | 60 | 60 | 300 | 12 | | 50 | | 27 | 20 | 55 | | | <u>X 6</u> | 800 ÷ 2 = | <u>X 7</u> | <u>X 9</u> | <u>X 8</u> | 200 ÷ 10 = | | 300 | 400 | 189 | 180 | 440 | 20 |