NAME \qquad DATE \qquad
Math Fluency Summative 3rd Grade Trimester 1 (Part 1)
3.NBT.A. 2 I can fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.
Add or Subtract as needed.

$$
\begin{array}{rrrr}
538 & 699 & 286 & 57 \\
+196 & \underline{512} & \underline{+476} & \underline{-38} \\
& & & \\
708 & 171 & 901 & 96 \\
-163 & \underline{+809} & \underline{-576} & \underline{+24} \\
& & & \\
428 & 728 & 485 & 45 \\
+196 & -718 & +211 & \underline{-13} \\
& & & \\
277 & 376 & 600 & 56 \\
-123 & +550 & \underline{-456} & +12
\end{array}
$$

4.NBT.B. 4 I can fluently add and subtract multi-digit whole numbers using the standard algorithm. (Grade 4 expectations in this domain are limited to whole numbers less than or equal to 1,000,000.)

$$
\begin{array}{r}
7751 \\
+3000
\end{array} r 28,560 \quad 63,579
$$

Math Fluency Summative $3{ }^{\text {rd }}$ Grade Trimester 1 (Part 2)

3.OA.C. 7 I can fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations.
By the end of Grade 3, know from memory all products of two one-digit numbers.
Multiply.

$\begin{array}{r} 1 \\ \times 4 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ \times 8 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ \times 1 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ \times 8 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ \times 3 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ \times 9 \\ \hline \end{array}$	$\begin{array}{r}7 \\ \times 3 \\ \hline\end{array}$	$\begin{array}{r}8 \\ \times 9 \\ \hline\end{array}$
$\begin{array}{r} 9 \\ \times 3 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ \times 5 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ \times 2 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ \times 9 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ \times 3 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ \times 7 \\ \hline \end{array}$	$\begin{array}{r}6 \\ \times 4 \\ \hline\end{array}$	$\begin{array}{r}7 \\ \times 8 \\ \hline\end{array}$
$\begin{array}{r} 8 \\ \times 3 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ \times 9 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ \times 4 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ \times 7 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ \times 5 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ \times 5 \\ \hline \end{array}$	$\begin{array}{r}6 \\ \times 8 \\ \hline\end{array}$	$\begin{array}{r}7 \\ \times 4 \\ \hline\end{array}$
$\begin{array}{r} 8 \\ \times 7 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ \times 6 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ \times 4 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ \times 7 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ \times 6 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ \times 7 \\ \hline \end{array}$	$\begin{array}{r}9 \\ \times 8 \\ \hline\end{array}$	$\begin{array}{r}5 \\ \times 4 \\ \hline\end{array}$
$\begin{array}{r} 4 \\ \times 1 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ \times 3 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ \times 5 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ \times 2 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ \times 2 \\ \hline \end{array}$	$\begin{array}{r}9 \\ \times 4 \\ \hline\end{array}$	$\begin{array}{r}6 \\ \times 8 \\ \hline\end{array}$	$\begin{array}{r}7 \\ \times 7 \\ \hline\end{array}$
$\begin{array}{r} 4 \\ \times 6 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ \times 9 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ \times 7 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ \times 5 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ \times 2 \\ \hline \end{array}$	$\begin{array}{r}8 \\ \times 4 \\ \hline\end{array}$	$\begin{array}{r}3 \\ \times 6 \\ \hline\end{array}$	$\begin{array}{r}9 \\ \times 6 \\ \hline\end{array}$

4.NBT.B.5\&6 I can multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers. I can find whole-number quotients and remainders with up to four-digit dividends.

$\begin{array}{r} 25 \\ \times \quad 12 \\ \hline \end{array}$	$64 \div 2=$	$150 \div 5=$	$248 \div 4=$	$\begin{array}{r} 100 \\ \times 2 \\ \hline \end{array}$	$900 \div 10=$
$\begin{array}{r} 10 \\ \times 6 \\ \hline \end{array}$	$100 \div 10=$	$\begin{array}{r} 30 \\ \times \quad 44 \\ \hline \end{array}$	$\begin{array}{r} 25 \\ \times 9 \\ \hline \end{array}$	$\begin{array}{r} 30 \\ \times 4 \\ \hline \end{array}$	$500 \div 5=$

Math Fluency Summative $3{ }^{\text {rd }}$ Grade Trimester 1 (Part 3)

3.OA.C. 7 I can fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations.
By the end of Grade 3, know from memory all products of two one-digit numbers.
Divide.

$48 \div 8=$	$60 \div 10=$	$20 \div 4=$	$24 \div 3=$	$32 \div 8=$
$54 \div 6=$	$28 \div 4=$	$63 \div 9=$	$9 \div 1=$	$42 \div 7=$
$70 \div 7=$	$80 \div 10=$	$24 \div 8=$	$24 \div 6=$	$18 \div 6=$
$36 \div 9=$	$7 \div 1=$	$3 \div 3=$	$18 \div 3=$	$36 \div 6=$
$50 \div 5=$	$70 \div 10=$	$16 \div 4=$	$56 \div 7=$	$30 \div 10=$
$35 \div 5=$	$56 \div 7=$	$36 \div 9=$	$10 \div 2=$	$63 \div 7=$
$9 \div 3=$	$25 \div 5=$	$40 \div 4=$	$25 \div 5=$	$64 \div 8=$
$14 \div 2=$	$24 \div 4=$	$15 \div 3=$	$6 \div 2=$	$42 \div 6=$
$18 \div 9=$	$16 \div 8=$	$18 \div 2=$	$12 \div 2=$	$6 \div 1=$

4.NBT.B.5\&6 I can multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers. I can find whole-number quotients and remainders with up to four-digit dividends.

$\underline{30}$					
$\underline{X 2}$	$104 \div 8=$	$300 \div 5=$	$180 \div 3=$	$\underline{X 3}$	$108 \div 9=$
$\underline{50}$					
$\underline{6}$	$800 \div 2=$	$\underline{X 7}$	$\underline{X 9}$	$\underline{X 8}$	$200 \div 10=$

