Math Fluency Summative 3rd Grade Trimester 1 (Part 1)

3.NBT.A.2 I can fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Add or Subtract as needed.

538	699	286	57
<u>+ 196</u>	<u>- 512</u>	<u>+ 476</u>	<u>- 38</u>
708	171	901	96
<u>- 163</u>	<u>+ 809</u>	<u>- 576</u>	<u>+ 24</u>
428	728	485	45
<u>+ 196</u>	<u>- 718</u>	<u>+ 211</u>	<u>- 13</u>
277	376	600	56
<u>- 123</u>	<u>+ 550</u>	<u>- 456</u>	<u>+ 12</u>

4.NBT.B.4 I can fluently add and subtract multi-digit whole numbers using the standard algorithm. (Grade 4 expectations in this domain are limited to whole numbers less than or equal to 1,000,000.)

7751 <u>+ 368</u> 5000 - 438

28,560 <u>+ 1,748</u> 63,579 - <u>1,234</u>

DATE Math Fluency Summative 3rd Grade Trimester 1 (Part 2)

3.OA.C.7 I can fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers. Multiply.

wuitipiy.							
1	2	3	4	5	6	7	8
<u>X 4</u>	<u>X 8</u>	<u>X 1</u>	<u>X 8</u>	<u>X 3</u>	<u>X 9</u>	<u>X 3</u>	<u>X 9</u>
9	1	2	3	4	5	6	7
<u>X 3</u>	<u>X 5</u>	<u>X 2</u>	<u>X 9</u>	<u>X 3</u>	<u>X 7</u>	<u>X 4</u>	<u>X 8</u>
8	9	2	3	4	5	6	7
<u>X 3</u>	<u>X 9</u>	<u>X 4</u>	<u>X 7</u>	<u>X 5</u>	<u>X 5</u>	<u>X 8</u>	<u>X 4</u>
8	2	3	2	8	4	9	5
<u>X 7</u>	<u>X 6</u>	<u>X 4</u>	<u>X 7</u>	<u>X 6</u>	<u>X 7</u>	<u>X 8</u>	<u>X 4</u>
4	3	6	7	8	9	6	7
<u>X 1</u>	<u>X 3</u>	<u>X 5</u>	<u>X 2</u>	<u>X 2</u>	<u>X 4</u>	<u>X 8</u>	<u>X 7</u>
4	7	6	8	9	8	3	9
<u>X 6</u>	<u>X 9</u>	<u>X 7</u>	<u>X 5</u>	<u>X 2</u>	<u>X 4</u>	<u>X 6</u>	<u>X 6</u>

4.NBT.B.5&6 I can multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers. I can find whole-number quotients and remainders with up to four-digit dividends.

25 <u>x 12</u>	64 ÷ 2 =	150 ÷ 5 =	248 ÷ 4 =	100 <u>x 2</u>	900 ÷ 10 =
10 <u>x 6</u>	100 ÷ 10 =	30 <u>x 24</u>	25 <u>x 9</u>	30 <u>x 4</u>	500 ÷ 5 =

NAME

DATE Math Fluency Summative 3rd Grade Trimester 1 (Part 3)

3.OA.C.7 I can fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers. Divide.

48 ÷ 8 =	60 ÷ 10 =	20 ÷ 4 =	24 ÷ 3 =	32 ÷ 8 =
54 ÷ 6 =	28 ÷ 4 =	63 ÷ 9 =	9 ÷ 1 =	42 ÷ 7 =
70 ÷ 7 =	80 ÷ 10 =	24 ÷ 8 =	24 ÷ 6 =	18 ÷ 6 =
36 ÷ 9 =	7 ÷ 1 =	3 ÷ 3 =	18 ÷ 3 =	36 ÷ 6 =
50 ÷ 5 =	70 ÷ 10 =	16 ÷ 4 =	56 ÷ 7 =	30 ÷ 10 =
35 ÷ 5 =	56 ÷ 7 =	36 ÷ 9 =	10 ÷ 2 =	63 ÷ 7 =
9 ÷ 3 =	25 ÷ 5 =	40 ÷ 4 =	25 ÷ 5 =	64 ÷ 8 =
14 ÷ 2 =	24 ÷ 4 =	15 ÷ 3 =	6 ÷ 2 =	42 ÷ 6 =
18 ÷ 9 =	16 ÷ 8 =	18 ÷ 2 =	12 ÷ 2 =	6 ÷ 1 =

4.NBT.B.5&6 I can multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers. I can find whole-number quotients and remainders with up to four-digit dividends.

30 <u>X 2</u>	104 ÷ 8 =	300 ÷ 5 =	180 ÷ 3 =	100 <u>X 3</u>	108 ÷ 9 =
50 <u>X 6</u>	800 ÷ 2 =	27 <u>X 7</u>	20 <u>X 9</u>	55 <u>X 8</u>	200 ÷ 10 =