NAME $\qquad$ DATE $\qquad$
Math Fluency Summative 3rd Grade Trimester 2 (Part 1)
3.NBT.A. 2 I can fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.
Add or Subtract as needed.
158
888
567
97 $+293$
$-477$ $+673$
$-39$
890
342
602
87
$-163$
$+348$

- 354
$+48$

$$
\begin{array}{r}
508 \\
+\quad 396 \\
\hline
\end{array}
$$

958
233
83

- 718
$+222$
$-23$

$$
\begin{array}{r}
478 \\
-456 \\
\hline
\end{array}
$$

743
$+219$
$-126$
86
$+33$
4.NBT.B. 4 I can fluently add and subtract multi-digit whole numbers using the standard algorithm. (Grade 4 expectations in this domain are limited to whole numbers less than or equal to 1,000,000.)

$$
\begin{array}{rrrr}
6672 & 6000 & 28,730 & 603,579 \\
+\quad 467 & -139 & +71,673 & -11,234 \\
\hline
\end{array}
$$

## Math Fluency Summative $3^{\text {rd }}$ Grade Trimester 2 (Part 2)

3.OA.C. 7 I can fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$ ) or properties of operations.
By the end of Grade 3, know from memory all products of two one-digit numbers.
Multiply.

| $\begin{array}{r} 1 \\ \times 1 \\ \hline \end{array}$ | $\begin{array}{r} 2 \\ \times 8 \\ \hline \end{array}$ | $\begin{array}{r} 3 \\ \times 2 \\ \hline \end{array}$ | $\begin{array}{r} 4 \\ \times 9 \\ \hline \end{array}$ | $\begin{array}{r} 5 \\ \times 1 \\ \hline \end{array}$ | $\begin{array}{r}6 \\ \times 8 \\ \hline\end{array}$ | $\begin{array}{r}7 \\ \times 1 \\ \hline\end{array}$ | $\begin{array}{r}8 \\ \times 6 \\ \hline\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 2 \\ \times 9 \\ \hline \end{array}$ | $\begin{array}{r} 1 \\ \times 6 \\ \hline \end{array}$ | $\begin{array}{r} 2 \\ \times 3 \\ \hline \end{array}$ | $\begin{array}{r} 3 \\ \times \quad 8 \\ \hline \end{array}$ | $\begin{array}{r} 2 \\ \times 4 \\ \hline \end{array}$ | $\begin{array}{r}5 \\ \times 8 \\ \hline\end{array}$ | $\begin{array}{r}6 \\ \times 2 \\ \hline\end{array}$ | $\begin{array}{r}7 \\ \times 9 \\ \hline\end{array}$ |
| $\begin{array}{r} 8 \\ \times 3 \\ \hline \end{array}$ | $\begin{array}{r} 9 \\ \times 8 \\ \hline \end{array}$ | $\begin{array}{r} 1 \\ \times 9 \\ \hline \end{array}$ | $\begin{array}{r} 2 \\ \times 7 \\ \hline \end{array}$ | $\begin{array}{r} 3 \\ \times 6 \\ \hline \end{array}$ | $\begin{array}{r}6 \\ \times 5 \\ \hline\end{array}$ | $\begin{array}{r}9 \\ \times 4 \\ \hline\end{array}$ | $\begin{array}{r}5 \\ \times 4 \\ \hline\end{array}$ |
| $\begin{array}{r} 8 \\ \times 5 \\ \hline \end{array}$ | $\begin{array}{r} 6 \\ \times 3 \\ \hline \end{array}$ | $\begin{array}{r} 4 \\ \times 6 \\ \hline \end{array}$ | $\begin{array}{r} 5 \\ \times 7 \\ \hline \end{array}$ | $\begin{array}{r} 7 \\ \times 7 \\ \hline \end{array}$ | $\begin{array}{r} 2 \\ \times 5 \\ \hline \end{array}$ | $\begin{array}{r} 6 \\ \times 4 \\ \hline \end{array}$ | $\begin{array}{r}7 \\ \times 6 \\ \hline\end{array}$ |
| $\begin{array}{r} 8 \\ \times 4 \\ \hline \end{array}$ | $\begin{array}{r} 9 \\ \times 9 \\ \hline \end{array}$ | $\begin{array}{r}4 \\ \times 3 \\ \hline\end{array}$ | $\begin{array}{r}9 \\ \times 5 \\ \hline\end{array}$ | $\begin{array}{r} 3 \\ \times 8 \\ \hline \end{array}$ | $\begin{array}{r}8 \\ \times 7 \\ \hline\end{array}$ | $\begin{array}{r}3 \\ \times 5 \\ \hline\end{array}$ | $\begin{array}{r}6 \\ \times 9 \\ \hline\end{array}$ |
| $\begin{array}{r} 4 \\ \times 5 \\ \hline \end{array}$ | $\begin{array}{r} 4 \\ \times 8 \\ \hline \end{array}$ | $\begin{array}{r} 7 \\ \times 3 \\ \hline \end{array}$ | $\begin{array}{r} 8 \\ \times 1 \\ \hline \end{array}$ | $\begin{array}{r}7 \\ \times 5 \\ \hline\end{array}$ | $\begin{array}{r}4 \\ \times 7 \\ \hline\end{array}$ | $\begin{array}{r}8 \\ \times 9 \\ \hline\end{array}$ | $\begin{array}{r}9 \\ \times 3 \\ \hline\end{array}$ |

4.NBT.B.5\&6 I can multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers. I can find whole-number quotients and remainders with up to four-digit dividends.

| 25 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\underline{x 2}$ | $707 \div 7=$ | $100 \div 5=$ | $153 \div 3=$ | $\underline{50}$ | $900 \div 10=$ |
| 38 |  |  |  |  |  |
| $\underline{x 6}$ | $100 \div 2=$ | $\underline{x 54}$ | $\underline{x 9}$ | $\underline{x 18}$ | $4005 \div 5=$ |

## Math Fluency Summative $3{ }^{\text {rd }}$ Grade Trimester 2 (Part 3)

3.OA.C. 7 I can fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$ ) or properties of operations.
By the end of Grade 3, know from memory all products of two one-digit numbers.
Divide.

| $56 \div 7=$ | $15 \div 3=$ | $25 \div 5=$ | $18 \div 6=$ | $14 \div 2=$ |
| :--- | :--- | :--- | :--- | :--- |
| $54 \div 6=$ | $56 \div 8=$ | $20 \div 4=$ | $12 \div 2=$ | $36 \div 6=$ |
| $6 \div 1=$ | $18 \div 3=$ | $24 \div 8=$ | $24 \div 6=$ | $24 \div 3=$ |
| $40 \div 4=$ | $49 \div 7=$ | $10 \div 1=$ | $25 \div 5=$ | $42 \div 7=$ |
| $18 \div 9=$ | $9 \div 3=$ | $3 \div 1=$ | $36 \div 9=$ | $24 \div 4=$ |
| $6 \div 2=$ | $48 \div 8=$ | $63 \div 7=$ | $3 \div 3=$ | $30 \div 6=$ |
| $72 \div 8=$ | $63 \div 9=$ | $36 \div 9=$ | $27 \div 3=$ | $28 \div 4=$ |
| $32 \div 8=$ | $12 \div 2=$ | $4 \div 2=$ | $35 \div 5=$ | $48 \div 8=$ |
| $50 \div 5=$ | $18 \div 2=$ | $16 \div 8=$ | $9 \div 1=$ | $16 \div 4=$ |

4.NBT.B.5\&6 I can multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers. I can find whole-number quotients and remainders with up to four-digit dividends.

| $\begin{array}{r} 60 \\ \times 2 \\ \hline \end{array}$ | $728 \div 8=$ | $250 \div 5=$ | $279 \div 3=$ | $\begin{array}{r} 50 \\ \times 3 \\ \hline \end{array}$ | $96 \div 8=$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 39 \\ \times 6 \\ \hline \end{array}$ | $2004 \div 2=$ | $\begin{array}{r} 24 \\ \times \quad 24 \\ \hline \end{array}$ | $\begin{array}{r} 73 \\ \times 9 \\ \hline \end{array}$ | $\begin{array}{r} 18 \\ \times \quad 48 \\ \hline \end{array}$ | $200 \div 4=$ |

